当前位置:首页
> 正文
怎么证明单调有界数列必有极限?
作者:山水闲人发布时间:2023-02-25浏览:463
因为函数有界,所以函数的值域有界,所以函数值域必定有“最小上界” (supreme), S因为是单调函数,所以对应任意小的e>0, 必定存在N>0使得对于任意x>N, 都有 | f(x) - S | < e满足极限的定义。设{x[n]}单调有界(不妨设单增),那么存在M>=x[n](任意n)。
所以{x[n]}有上确界,记作l。
对任意正数a,存在自然数N,使得x[N]>l-a。因为x[n]单增,所以当n>=N时,l-a所以|x[n]-l|所以{x[n]}极限存在,为l。证明设数列{xn}单调递增且有上界,接下来用戴德金定理证明{xn}必有极限。分类讨论,如果{xn}从第N项开始所有的项都相等(即数列有无穷多个相等的项),那么由于数列是单调递增的,当n>N时,有xn=xN,因此对即{xn}收敛到xN。
如果{xn}中只有有限项相等,即数列从某项开始严格单调递增,那么因为{xn}有上界,可取所有{xn}的上界组成一个数集B,并取A=R/B。
声明:部分资源转载自互联网,转载目的在于传递更多知识,并不代表本网赞同其观点和对其真实性负责。如有侵权或者知识有谬误之处,麻烦通知删除,谢谢!联系方式: zzsla2022#163.com