当前位置:首页 > 正文

数学中的“集合”的英文是什么?

作者:大山发布时间:2023-02-23浏览:462


集合一般是在高中一年级的基础数学章节。是高中数学函数的基础哦~~关于集合的概念:点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念.初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集.”这句话,只是对集合概念的描述性说明.我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界.总之,集合:某些指定的对象集在一起就形成一个集合。

集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。

例如,由方程的所有解组成的集合,可以表示为{-1,1}.注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…}(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。格式:{x∈a|p(x)}含义:在集合a中满足条件p(x)的x的集合。例如,不等式的解集可以表示为:或所有直角三角形的集合可以表示为:注:(1)在不致混淆的情况下,可以省去竖线及左边部分。

如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。注:何时用列举法?何时用描述法?(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。


声明:部分资源转载自互联网,转载目的在于传递更多知识,并不代表本网赞同其观点和对其真实性负责。如有侵权或者知识有谬误之处,麻烦通知删除,谢谢!联系方式: zzsla2022#163.com